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Abstract
Determining which species are at greatest risk, where they are most vulnerable, and what are the trajectories of their 
communities and populations is critical for conservation and management. Globally distributed, wide-ranging whales and 
dolphins present a particular challenge in data collection because no single research team can record data over biologically 
meaningful areas. Flukebook.org is an open-source web platform that addresses these gaps by providing researchers with 
the latest computational tools. It integrates photo-identification algorithms with data management, sharing, and privacy 
infrastructure for whale and dolphin research, enabling the global collaborative study of these global species. With seven 
automatic identification algorithms trained for 15 different species, resulting in 37 species-specific identification pipelines, 
Flukebook is an extensible foundation that continually incorporates emerging AI techniques and applies them to cetacean 
photo identification through continued collaboration between computer vision researchers, software engineers, and biolo-
gists. With over 2.0 million photos of over 52,000 identified individual animals submitted by over 250 researchers, the 
platform enables a comprehensive understanding of cetacean populations, fostering international and cross-institutional 
collaboration while respecting data ownership and privacy. We outline the technology stack and architecture of Flukebook, 
its performance on real-world cetacean imagery, and its development as an example of scalable, extensible, and reusable 
open-source conservation software. Flukebook is a step change in our ability to conduct large-scale research on cetaceans 
across biologically meaningful geographic ranges, to rapidly iterate population assessments and abundance trajectories, and 
engage the public in actions to protect them.

Keywords  Community science · Computer vision · Deep learning · Individual identification · Machine learning · Mark 
recapture

Introduction

Answering which species are at greatest risk, where they 
are most vulnerable, and what are the trajectories of their 
communities and populations is critical for conservation 
and management. Yet there are still large gaps in our abil-
ity to answer these questions, even for well-studied taxa 
(Rondinini et al. 2014). Wide-ranging species may be well 
known, and their biology and behavior well understood, but 
the appropriate data on their distribution and abundance 
remain lacking.

Globally distributed, wide-ranging, and highly mobile, 
marine species present a particular challenge in addressing 
these data gaps because no single research team can collect 
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data over the entire range of many species. Cetaceans (the 
whales, dolphins, and porpoises) are a particularly acute 
example: 24% of all species are assigned to a threatened 
category (Vulnerable, Endangered, or Critically Endangered; 
22 of 90) and 10% of all species are currently listed as ‘Data 
Deficient’ (nine of 90 species, IUCN 2020). To learn how 
these animals live and what influences their lives (either 
ecological or anthropogenic), we need to ask questions over 
huge geographical, and indeed logistical, scales.

From the boats that take researchers out to sea to the 
devices that help us access the depths, marine science 
has been and always will be a technology-driven field. It 
could be argued that the camera was the tool and photo-
identification the technique that changed our approach to 
marine mammal research more than any. This pioneering 
non-invasive method of study drove a major shift in our 
approach to research and generated a huge amount of sci-
entific knowledge on animals as individuals (see Würsig 
and Würsig 1977; Katona and Whitehead 1981; Bigg 1982; 
Payne 1986; Hammond et al. 1990). Numerous cetacean spe-
cies have been particularly well studied by photo ID, gen-
erating large catalogs of photos of identified individuals, 
for example humpback whales (Megaptera novaeangliae, 
e.g. Barlow et al. 2011), bottlenose dolphins (Tursiops spp., 
e.g. Wells and Scott 1990), and North Atlantic right whales 
(Eubalaena glacialis, e.g. Hamilton and Martin 1999). 
These catalogs are the product of a huge amount of manual 
human labor, time, and cost; where each new photo must be 
matched against the rest of the catalog of known individuals 
in order to answer, “who is this animal?” and understand 
abundance, distribution, demographics, social behavior, 
health, and movement.

Because of the inherent costs of being at sea, cetacean 
field study is costly, and as a result, less than 1% of all ceta-
cean species’ ranges have been surveyed with enough fre-
quency to estimate population trends (Kaschner et al. 2013). 
Outside of these larger transects, much cetacean research is 
underfunded and geographically small scale compared to 
the geographic spread of cetacean populations or species 
distributions. As such, much of the data management and 
analysis tools used for this research are developed in an ad 
hoc manner to fit current needs, under the current funding, 
to address the questions and actions at hand. As a result, 
protocols to curate and analyze photographic data often dif-
fer from project to project, creating serious challenges for 
collaboration between institutions or study sites, as well as 
data legacy concerns. Arriving at a critical mass of data 
for population analysis can take years, especially for rare 
or endangered species. After that, the enormous amount of 
manual data processing that is necessary for manual photo 
ID can create multi-year lags between data collection and 
scientific results, which can result in conclusions too coarse 
or too slow for effective and dynamic conservation and 

management actions. This limits the scope, scale, repeat-
ability, continuity, and return-on-investment of these studies.

With modern advances in computer vision, especially 
those integrating machine learning, computers can increas-
ingly curate these catalogs and match these photos for us. 
Yet despite algorithmic advances, marine mammal research-
ers often do not have the technical expertise or budget to 
take advantage of the latest computing tools. And even when 
cutting edge algorithms are employed, without a standard 
data format and platform, old problems of interoperability, 
data isolation, and data legacy remain. Closed management 
of data limits researchers from collaborating not only with 
each other, but with community scientists and members of 
the public. Despite collecting potentially valuable ecologi-
cal data, engaged community scientists face many obstacles 
in connecting to researchers and contributing to scientific 
study.

Flukebook (https://​www.​fluke​book.​org) is a non-profit, 
open-source cetacean data archiving, analysis, and photo-
identification tool developed as part of the larger Wildbook 
platform (https://​wildme.​org/#/​wildb​ook). By bringing 
together software developers, machine learning researchers, 
and biologists, Flukebook bridges the gap between mod-
ern computing techniques and ecological field research to 
provide the latest computer vision technology to cetacean 
researchers around the world. Users upload data through a 
web interface, and the platform automatically detects and 
draws boxes around identifiable cetacean features in those 
photos, and identifies the individual animals therein using 
the latest algorithms for cetacean photographic ID. The plat-
form also facilitates the management of these catalogs of 
photos and observations that are necessary to support these 
studies.

Flukebook allows historical catalogs to be imported as 
well as unprocessed data, and supports a large number of 
ecological observations including measurements, biologi-
cal samples, effort data, and strandings. Users can export 
their data from Flukebook in a variety of formats, supporting 
third party tools for mark-recapture, social group analysis, 
and mapping, as well as data frameworks such as OBIS and 
GBIF for greater access and use by government and man-
agers. Flukebook allows researchers, institutions, and com-
munity scientists to collaborate and share data on an opt-in 
basis, allowing for the big picture analysis that is necessary 
to study these long-lived and highly mobile species in a way 
that preserves data privacy and ownership.

Flukebook is a step change in our ability to conduct large-
scale research on whales across biologically meaningful geo-
graphic ranges, to identify and manage their populations, and 
to engage the public in actions to protect them. Below, we 
introduce the platform; its data structure; its tools for man-
aging, analyzing, importing, and exporting data; its model 
for data collaboration and privacy; and outline its advanced 

https://www.flukebook.org
https://wildme.org/#/wildbook
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capabilities for detecting and identifying individual animals 
with machine learning and computer vision tools.

Platform overview

Flukebook is a web-based application. This breaks with a 
common paradigm of desktop-based photo ID tools for ceta-
ceans (e.g. Whitehead 1990; Stanley 1995; Hillman et al. 
2003; Crall et al. 2013; Weideman et al. 2017; Thompson 
et al. 2019; Moskvyak et al. 2019) to achieve myriad ben-
efits. A web-based application allows users to access power-
ful machine learning algorithms running on high-powered 
servers without the need for any specialized equipment 
on their local machine. The site can be used from a web 
browser anywhere in the world with an internet connection 
reliable enough to upload and download images. Because it 
is a shared platform on a single server, it provides research-
ers with the ability not only to match photos within their 
own catalog, but to compare with other data collectors who 
might have seen the same individuals. Flukebook’s server 
resources can be easily scaled-up by the developers at Wild 
Me (https://​www.​wildme.​org), for example adding more pro-
cessing power or database storage as the platform grows, 
and this server is automatically backed-up nightly ensuring 
catalogs cannot be lost by technological accidents. Fixes and 
improvements to the platform are instantly available to all 
users without any effort on their part.

The platform is free for approved users, and the Wild Me 
nonprofit organization which develops and manages Fluke-
book has no plans to charge for its use at any point in the 
future. The nonprofit’s operating costs including Flukebook 
servers are covered primarily by grants (see this paper’s 
funding statement), and to a lesser extent service contracts 
where the nonprofit is paid to develop and make available 
new features for the platform.

The most important organizational feature of Flukebook 
is its position as an open-source project in the larger fam-
ily of Wildbook platforms. As of June 2021, there are 21 
Wildbooks maintained by Wild Me, supporting the study 
of over 50 species. Each Wildbook instance runs a branch 
of the open-source Wildbook codebase (https://​github.​com/​
WildM​eOrg/​Wildb​ook), and can be understood as a com-
puter vision-supported catalog for different species, such 
as sharks (https://​www.​shark​book.​ai/), giraffe (https://​giraf​
fespo​tter.​org/), or giant sea bass (https://​spott​inggi​antse​
abass.​msi.​ucsb.​edu/), with Flukebook being the Wildbook 
for cetaceans. The open-source nature of Wildbook allows 
new features or algorithms developed for one platform to 
be easily deployed on all of them at virtually no cost. This 
provides a huge value for each investment and fundraising 
effort, and a significant effect in conservation where fund-
ing can be scarce. For example, the bulk data uploader on 

Flukebook was originally developed with funding from 
groups in the Indian Ocean and has since become widely 
adopted on other Wildbooks (e.g. the African Carnivore 
Wildbook, https://​afric​ancar​nivore.​wildb​ook.​org; and the 
Amphibian and Reptile Wildbook, https://​amphi​bian-​repti​
le.​wildb​ook.​org) granting access to this feature to hundreds 
of researchers across the globe. This scales up the impact of 
conservation funding by rapidly sharing technological inno-
vation with research communities for many terrestrial and 
marine species. The result is that small investment in one 
side of the platform’s ecosystem results in improvements, 
bug fixes, and new features across all instances.

The architecture of Flukebook and other Wildbook plat-
forms is bipartite in nature. These two parts can be under-
stood as the data management server and the image analy-
sis server (Fig. 1). The data management server hosts the 
frontend web application on Flukebook.org, where users go 
to log in; inspect, manage, and upload data; start matching 
jobs; etc. This frontend contains all of the user interface (UI) 
components and interactions facing the users. The backend 
computer vision server, running a separate code repository 
on a separate machine, is called Wildbook image analysis 
(WBIA). These servers communicate via http requests, with 
images and computer vision queries sent from Flukebook to 
WBIA, and computer vision results sent back from WBIA 
to Flukebook. Both servers run SQL databases containing 
the data necessary for that server’s function, which are syn-
chronized by these calls and other nightly integrity scripts.

Data management and curation

Though perhaps not as exciting as the computer vision 
algorithms, the data management web app’s frontend of 
flukebook.org is equally if not more important in making 
the platform a valuable scientific tool. Tasks such as upload-
ing data, inspecting photos, querying, reviewing, and con-
firming match results, bulk processing and exporting data, 
sharing data and collaborating, and producing a resolved 
catalog of unique individuals are all tasks separate from the 
computer vision processing that takes place on the image 
analysis server. In essence, this data management platform 
can be understood as a user interface on top of a database of 
ecological observations, with a suite of data processing and 
inspection tools. The database structure was designed with 
mark-recapture population studies in mind. As of June 2021, 
Flukebook hosts over 2 million photos spanning 266,038 
sightings of 52,638 identified individual cetaceans. The user 
interface is available in four languages (English, French, 
Spanish and Italian).

The Flukebook frontend and data management server is 
an instance of Wildbook, specified in the ‘flukebook’ branch 
of the open-source Wildbook repository available on GitHub 

https://www.wildme.org
https://github.com/WildMeOrg/Wildbook
https://github.com/WildMeOrg/Wildbook
https://www.sharkbook.ai/
https://giraffespotter.org/
https://giraffespotter.org/
https://spottinggiantseabass.msi.ucsb.edu/
https://spottinggiantseabass.msi.ucsb.edu/
https://africancarnivore.wildbook.org
https://amphibian-reptile.wildbook.org
https://amphibian-reptile.wildbook.org
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(https://​github.​com/​WildM​eOrg/​Wildb​ook/​tree/​fluke​book). 
Except for user interface themes and cetacean-specific algo-
rithm configurations, Flukebook’s code is largely identical 
to that of the master-branch Wildbook, a trait that all other 
Wildbook 7.x platforms share. Wildbook is a Java web appli-
cation built on the Apache Tomcat framework (http://​tomcat.​
apache.​org/).

Table 1 provides an overview of the core high level data 
objects on Flukebook. The central data object is the Encoun-
ter, a recorded sighting of a single individual at a single 
place and time. In the capture-recapture framework, an 
Encounter is a capture of a single individual. The Encounter 
contains uploaded photos of the event in addition to observa-
tions researchers may have made in the field, such as behav-
ior and morphological measurements. Attached to these pho-
tos are the derived data products such as labeled bounding 
boxes (highlighted rectangular regions in an image) around 

features such as dorsal fins and flukes that were found auto-
matically, and links to identification results.

Other top-level data objects include the Marked Indi-
vidual, an individual animal represented by its history of 
identified Encounters. The only constraint on these identi-
fications is that each one must have been approved by the 
user, meaning that historical catalogs of Encounters can be 
uploaded with or without photos. New identifications made 
with the aid of matching algorithms on Flukebook also 
must be confirmed by the users, ensuring that data owners 
maintain ultimate control over data integrity and the Marked 
Individual objects, which contain the consolidated photos 
and observations of a single animal over time. The third 
major object is the Sighting, representing a sighting of a 
group of animals, containing observational fields which are 
not specific to a single individual such as group size, group 
behavior, and weather conditions.

The main objects have unique web endpoints, such that 
any Encounter, Marked Individual, and Sighting has a static 
URL that can be referenced and linked, where all data fields 
can be inspected and edited by approved users. These three 
objects are linked to each other in both the database and 
user interface (UI), so that one can navigate in a single click 
from a Marked Individual to one of its Encounters, then 
to the Sighting where one can find the other animals that 
were co-occurring during that observation, and so on. This 
connectivity is highlighted by the co-occurrence diagram 
on a Marked Individual page, which is dynamically com-
puted to show at a glance the other individuals that have 
been observed in groups (via the Sighting objects) with 
the individual in question. For social cetaceans, Flukebook 
also displays visualizations of specific social relationships 
recorded by researchers, such as community membership 
and kin relations, as shown in Fig. 2.

It is important to note that while Flukebook dictates this 
data model, significant discretion is left to the users and data 
owners regarding data quality and standards. The goal is 
for all data to be interoperable without dictating particular 
research practices that may differ from study to study, and 
which may have already been established in ongoing stud-
ies that predate the platform itself. For example, the Sight-
ing object concerns a group of animals observed in a single 

Fig. 1   System diagram of Wildbook servers and stakeholders. Cre-
ated by Wild Me

Table 1   The core high-level objects in the Flukebook data model

Data object name Description Example subfields

Encounter A sighting of a single individual at a single place and time Photos, annotations (labeled photo regions), date and 
GPS coordinates, observational fields like behavior 
or size

Marked individual An individual animal that has been identified across one or more 
Encounters

Species, sex, name/catalog ID, list of Encounters

Sighting A sighting of a group of animals at a single place and time. A 
Sighting contains the Encounters for each individual observed in 
the sighting

Group size, group behavior, weather conditions

https://github.com/WildMeOrg/Wildbook/tree/flukebook
http://tomcat.apache.org/
http://tomcat.apache.org/
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place and time. But different researchers may use different 
notions of what constitutes a co-occurring group of animals, 
or even what constitutes a single time (is a continuous 6-h 
observation one event, or several?). By leaving these deci-
sions to the user, the platform aims to be a neutral tool that 
facilitates diverse research. Simultaneously, the data and col-
laboration models encourage users to work together when 
doing so is beneficial.

Data ownership and collaboration model

Flukebook has standard user accounts with securely stored 
passwords. Each account controls access to the data which 
they have uploaded. Users can be recorded as members of 
Organization objects, which represent real-world research 
groups and consortia. These Organizations serve to conform 
the Flukebook experience to a research project’s data stand-
ards. Categorical observations (where the user inputs an 
observational value from a list of options), such as observed 
behavior on an Encounter or photo quality labels, are stand-
ardized on this Organization-level. These Organizations also 
serve to resolve the issue of conflicting names or ID numbers 
for Marked Individuals between different research groups, 
by allowing each Organization to record distinct individual 
names for a given animal. Standardizing data options such as 
these at the Organization level, rather than Flukebook-wide, 
is crucial for supporting the broad range of data collection 
standards used by cetacean researchers while still enforcing 
consistency within projects. For example, the metrics used 
to quantify photo quality or distinctiveness of an individ-
ual, both which are important to photo-identification work 
and the analyses they support, vary both between research-
ers studying the same species as well as between species; 
and often show observer bias between researchers using 

the same metric (see for example Urian et al. 2015 who 
found a remarkable degree of variation between experienced 
researchers’ photo quality scores, even when using the same 
scale, and in addition they disagreed significantly on the 
total number of individuals in a controlled dataset). While 
this flexibility does result in different research teams using 
different labels in the metadata associated with photos, many 
users would simply not use the platform if they could not 
implement their existing data standards and definitions; so 
this flexibility was designed as a part of Flukebook as a key 
to enabling these collaborations. Simultaneously, researchers 
who intend to combine their observations in larger collabo-
rative studies are, by having their data stored in Flukebook, 
provided with a conversion between two scales or metrics 
for the same parameter which ensures their data are fully 
consistent. Importantly, scientifically critical decisions can 
be made when analyses are undertaken off the platform after 
data are collated and exported. For example, researchers 
might apply a photo quality standard for inclusion in popula-
tion level analyses, or their own definition of co-occurrence 
or association for social analysis.

Data ownership is a high priority factor for many Fluke-
book users and has often been the primary concern for 
researchers considering a shared data platform. Indeed, 
several large preexisting catalogs which have been added to 
Flukebook are constrained by existing privacy and owner-
ship agreements that predate Flukebook itself, which must 
be respected while the data are hosted on the platform to 
facilitate automatic identification and other processing. 
Simultaneously, one of the core objectives of Flukebook is to 
enable and encourage collaboration between research groups 
and data providers. Valuable insights are gained by compar-
ing and pooling data from multiple organizations, informing 
a more complete understanding of a population’s abundance, 
distribution, and behavior. By design, Flukebook encourages 

Fig. 2   Social relationships visu-
alized based on Flukebook data 
for “Pinchy”, #5560, a sperm 
whale in the Eastern Caribbean. 
This illustrates all individuals 
with whom she co-occurred and 
maternal relationship within her 
unit, unit F (individuals #5130, 
5703, 5722, 6070, 6219, 5727, 
5563, 5561, and 6068) and 
bond-group unit U (individuals 
#6058, 5562, 6035, and 5151; 
Gero et al. 2014). Data courtesy 
of The Dominica Sperm Whale 
Project
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multi-institutional, international, collaborative research 
across large geographic scales while maintaining a respect 
for the privacy and original ownership of submissions.

The actual mechanics of Flukebook’s security system are 
relatively simple and are the product of discussions with 
stakeholders and government agencies with diverse needs. 
First, every Encounter on Flukebook is owned by a single 
user account, by default the submitter of that data. This data 
owner determines who else can read and edit their data. Data 
visibility and access permissions are defined via pairwise 
Collaborations between users, which must be reciprocally 
approved at either “view-only” or “edit” levels.

These data sharing collaborations are initiated when a 
user sends a request to another user, usually prompted by 
an attempt by the requester to view the recipient’s data and 
being denied access. When a collaboration request is sent, 
an email is sent to the recipient which includes an optional 
message from the requester and importantly, the requester’s 
email address (user emails are otherwise hidden from other 
Flukebook users, and the requester does not see the recipi-
ent’s email unless the recipient emails them). Sharing this 
contact information allows the two parties to establish com-
munication directly and agree on how each other’s data can 
be used; some users choose to establish, over email, formal 
memoranda of understanding regarding these agreements. 
Within Flukebook, a notification is sent to the user’s account 
page where Collaborations can be managed, approved, and 
revoked.

Within this data ownership system Flukebook strongly 
encourages collaboration. While complete data records 
are only visible as prescribed by the Collaborations, sum-
mary information is just visible enough to other users, so 
that those users can determine if they would like to request 
access to those data (with the exception of certain locked-
down datasets described in the next paragraph). In particular, 
the automated matching system compares across all pictures 
of a species, within the given search criteria, and will return 
a photo uploaded by another user if it is found to match. This 
allows the crucial discovery of two data collectors observing 
the same individual cetacean, perhaps separated by a large 
physical or temporal distance. In this case, upon seeing a 
match between their respective data, researchers can contact 
each other and decide whether they would like to collaborate 
and share more information. Besides during the matching 
process, users can also discover potentially relevant data to 
which they do not yet have access in the search functions 
(described below). For example, a sperm whale researcher 
might search for sperm whale sightings in the Caribbean in 
a certain time period to view summary data across users, 
and then send a Collaboration request to other users who 
have submitted such data. These two instances of partial 
data visibility—match results and search results—allow 
users to discover others studying the same research areas, 

species, and questions. This creates an environment in which 
users are consistently urged to learn how their data connect 
with that of other users on the platform, with the goal of 
building an increasingly collaborative research community 
among Flukebook users. However, full data records cannot 
be viewed nor exported from the platform without all users 
agreeing to established Collaboration agreements.

It is important to note that users can also opt out entirely 
from collaboration requests and even partial data visibility 
to other Flukebook users, essentially using the platform as 
a private matching tool; however, this option is hidden and 
can only be activated by site administrators. On the opposite 
end of the privacy spectrum, data submitted by members of 
the public without user accounts or organizational affiliation 
are visible to every user on Flukebook.

Data validation

One of the standardization benefits of a shared data platform 
is providing automated validation and consistency checks 
on all data that are submitted. This can be as simple as con-
straining user input to ranges of values, such as positive 
integers, or a predefined list of study sites and recognized 
species. Flukebook also performs more complex data checks 
such as validating that a location’s latitude/longitude lies 
within a fixed distance from a body of water. Invalid data can 
be rejected outright, and borderline data marked for further 
review.

Search tools

Robust search and analysis tools are useful not only for navi-
gating the catalogs on Flukebook but for generating use-
ful data products. The Flukebook database can be searched 
by Encounters, Marked Individuals, and Sightings. Search 
forms translate a user’s input on a web page into SQL que-
ries of the database backend. Most data fields can be used as 
search filters, for example species, date, location, submitter, 
observed behavior, life stage, photographed features such as 
fluke or dorsal fin, whether a biological sample was taken, 
whether a satellite tag was deployed during the observa-
tion, and so on. Search results are presented in a tabular 
format where each row is one database record. Clicking 
that row takes the user to the record’s web page; the table 
also includes hyperlinks to related data objects such as the 
Marked Individual page for a given Encounter. The SQL 
query which was derived from the search input is shown 
below the results, providing added clarity for technical users 
and developers.

Since search results effectively represent a dataset on 
Flukebook, for example “male sperm whales sighted by me 
and my collaborators in Dominica in 2018,” search results 
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are where many of Flukebook’s data analysis tools are 
located. In addition to the default tabular representation of 
these results, users can see them mapped geographically, 
distributed temporally on a calendar, or as a gallery of all 
matching images. There is a further ‘Analysis’ tab avail-
able on Encounter and Marked Individual search results 
that shows various computed analyses of that dataset, such 
as a discovery curve (Fig. 3), an annual seasonality histo-
gram showing the number of Encounters per calendar week 
(Fig. 3), and pie charts of various distributions such as spe-
cies, sex, and location of matching records.

Data exports

In addition to the analysis and inspection tools provided in 
search results, users have the option of exporting the data 
represented by a search in a number of different formats 
for analysis using other third-party tools. These exports 
are also subjected to the Flukebook data security model, 
ensuring no user can export data they do not have permis-
sion to access.

The most basic format is a standard Excel sheet with 
one row per database object and one column per database 
field. This is the “complete” Flukebook export that shows 
all the data fields stored for a given object type and search 
query. This is the “Flukebook Standard Format” used by 
the Bulk Uploader described in the following section. This 
complete export allows for advanced filtering that may 
not be implemented in the user interface: for example, the 
Marked Individual page shows every confirmed Encounter 
of that individual, but a user might want to analyze only 
those Encounters that meet certain data quality or photo 
quality criteria; this is possible with search and export 
filtering.

There are also exports formatted specifically for com-
patibility with other databases, in particular the OBIS 

Ocean Biodiversity Information System. Other exports 
include a GIS shapefile of Encounter locations; a KML 
export that is compatible with Google Earth; and a con-
figurable mark-recapture export compatible with RMark 
(Laake 2013), useful for using Flukebook data to generate 
abundance and trend estimates.

A benefit of being open source is that it is easy for 
developers and researchers outside of the Wild Me organ-
ization (which manages Flukebook) to produce tools to 
export or analyze Flukebook data. The most significant 
example of this is the RWildbook R package (Bonner and 
Huang 2018), which allows a user to pull data records 
directly from Flukebook into their R environment after 
providing their login credentials.

Data input

Data submitted to Flukebook should include at a minimum 
three key pieces of information: what was seen, where 
it was observed, and when it was observed. Submissions 
can be uploaded through two pathways: encounter report-
ing and bulk upload. These distinct use cases are briefly 
described here, and more detailed step-by-step instructions 
for researcher data upload are available in the official soft-
ware documentation at https://​docs.​wildme.​org/​docs/​resea​
rchers/​data_​entry.

Encounter reporting

A simple web form can be used to report an Encounter in 
cases where the user wishes to submit data from an obser-
vation of a single animal with one or more photos. When 
choosing this pathway, it is assumed that all photos contain 
only the same single animal, satisfying the definition of 

Fig. 3   Two plots generated for Flukebook Encounter search results, 
in this case humpback whale Encounters off Iceland (n = 455 individ-
uals). Left is the discovery curve of new individuals as a function of 

submitted and identified Encounters. Right is a seasonality histogram 
of Encounters per calendar week. Data courtesy of Elding Whale 
Watch

https://docs.wildme.org/docs/researchers/data_entry
https://docs.wildme.org/docs/researchers/data_entry
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an Encounter (one animal at a location and point in time). 
This method is best used for more solitary animals and 
opportunistic sightings.

The simple online form guides the user to drag and 
drop or upload the photo files from their computer, sub-
mit the date and time the image(s) were taken (which can 
be automatically pulled from the EXIF metadata from 
the uploaded images themselves, which is presented to 
the user for their confirmation), describe the location the 
Encounter took place (including options to label country, 
field research sites listed in Flukebook already, GPS posi-
tion which can also be pulled from the EXIF metadata 
from the images uploaded), label the species of whale or 
dolphin in the Encounter from a dropdown menu (which 
determines the computer vision pipeline that is then trig-
gered, illustrated in Fig. 4), and some descriptors about 
themselves including name and email if they are not 
logged into their account.

There is an ‘Additional Information’ tab at the bottom 
which allows the submitter to include a larger more detailed 
array of fields connected to the Encounter including, but not 
limited to, Organization, project name, sex, observed behav-
ior, metrics photo quality and markedness, other noticeable 
scarring, life stage and status, alternate names for the ani-
mal, Sighting ID, other email addresses, and additional com-
ments, all of which can be edited after submission as well.

Bulk upload

The Flukebook bulk upload submission pathway allows for 
hundreds or even thousands of Encounters to be submitted 
at once. The Bulk Uploader was designed to integrate a field 
season’s worth of images or to allow for new users to upload 
their mid-sized, historical catalogs on their own.

During the Bulk Upload process, a folder of images 
is uploaded, along with metadata in an Excel file in a 
standardized format called the Wildbook Standard For-
mat (available at https://​docs.​wildme.​org/​docs/​resea​rch-
ers/​bulk_​import, or with a Flukebook login on the Bulk 
Upload page). The format is simple, with each row in the 
spreadsheet corresponding to one Encounter, and each col-
umn header corresponding to one data field. Each Encoun-
ter must include one field for each of the following: (1) 
location, (2) date, and (3) taxonomy. If multiple individu-
als were seen in a group, that co-occurrence information 
is recorded with optional Sighting columns. Many more 
detailed columns are included in the standard format, the 
use of which are optional. Automatic data quality checks 
are performed, such as ensuring that data fields are pro-
vided in the correct type and format, and the user reviews 
their submission before it is committed to the database. 
Ensuring data quality and integrity in this way has been 

found to be very important when allowing users to upload 
hundreds or thousands of records at once.

To avoid issues related to network connectivity, a user is 
allowed to upload photos in multiple web sessions, and all 
prior-uploaded photos are available for reference from sub-
sequent Excel sheet uploads. To avoid over-taxing the server, 
a limit of 1000 rows per Excel file is encouraged.

For new users with exceptionally large historical catalogs 
that may be tens or hundreds of gigabytes in size, research-
ers may contact the developers at Wild Me to onboard these 
datasets on a contracted basis without going through the 
Bulk Uploading process themselves.
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Fig. 4   Flukebook species-specific image processing pipelines from 
automated detection (yellow diamonds) of body parts (orange paral-
lelograms: FL fluke, DF dorsal fin, HD head, LT lateral side of body), 
through identification through multiple algorithms which have been 
trained for specific species (blue, rounded rectangles: HS HotSpot-
ter, DTW dynamic time warping, CR CurvRank, PIE pose-invariant 
embeddings, K7 Kaggle7, FF FinFindR, DSAI Deepsense.ai), and 
finally to defining Marked Individuals (green ovals). Fifteen of the 37 
species-specific pipelines are new since the beginning of 2021, with 
more under active development

https://docs.wildme.org/docs/researchers/bulk_import
https://docs.wildme.org/docs/researchers/bulk_import
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Importantly, Flukebook does not require photos to be 
associated with each Encounter, which allows users to bulk 
upload entire historical sightings catalogs on a purely pres-
ence-based basis. This allows researchers to use only the 
database management parts of the platform in cases where 
they do not have the data or motivation to use the computer 
vision features.

Ocean alert mobile app

Currently, Flukebook has a front-end app for iOS and 
Android called Ocean Alert (Conserve.IO, https://​apps.​
apple.​com/​us/​app/​ocean-​alert/​id145​71137​71) which 
allows community science and research users to submit 
data through their mobile devices. Supported data includes 
species, group size, behavioral data, and photos for iden-
tification, as well as effort in the form of vessel tracks that 
are saved on Flukebook. This project opened the possibil-
ity of connecting any app that collects this kind of data to 
Flukebook using an established application programming 
interface (API), which is a defined standard that allows 
external programs to communicate with the Flukebook 
server. This illustrates how Flukebook is not a closed 
platform, and this type of integration is an area of future 
development, with potential connections with other appli-
cations and projects. Of course, such efforts also conform 
with the privacy and ownership of user-submitted data on 
Flukebook.

Computer vision: Wildbook image analysis

Access to cutting edge computer vision algorithms is the 
novel feature that draws in most users to Flukebook. The 
goal of this system is to decrease the amount of research 
time and effort needed to perform individual identifica-
tion. This core computer vision functionality operates on 
a separate server than the frontend data management web 
application, on an instance of the Wildbook image analy-
sis server (WBIA, available at https://​github.​com/​WildM​
eOrg/​wildb​ook-​ia). This image analysis server is a Python 
application (https://​www.​python.​org) that uses the Flask 
framework (https://​flask.​palle​tspro​jects.​com) to operate 
as a web server in communication with the frontend. The 
computer vision server operates a database containing 
primarily images and information algorithmically derived 
from those images. This image database structure is sum-
marized in Table 2.

The image analysis server contains a large number of 
tools for image manipulation and processing, supporting 
the two primary phases of the image analysis pipeline: (1) 

detection, where the system takes an unprocessed image and 
draws bounding boxes around every animal in that image, 
each box and additional metadata forming an Annotation, 
and (2) identification, where one or more matching algo-
rithms are run on each Annotation to identify the individual 
animal within it.

Detection

The detection pipeline (presented in-depth in Parham et al. 
2018) uses deep learning to process raw input images into 
labeled and cropped Annotations, the semantic image sub-
regions described above, with the ultimate goal of finding 
the relevant regions to send as input to the subsequent iden-
tification phase. The WBIA detection pipeline is a cascade 
of deep convolutional neural networks (DCNNs) that apply 
a fully connected classifier on automatically extracted fea-
tures. Two separate networks produce (1) Annotation bound-
ing box locations, and (2) feature labels (such as fluke or 
dorsal fin), viewpoint labels (such as left vs. right dorsal 
views), and image quality for each candidate Annotation.

The image analysis server’s detector is generally trained 
on a per-species basis, meaning that adding support for each 
new species requires a retraining process and a manually 
annotated training set of roughly 1,000–2,000 representative 
photos of that species (this number differs depending on how 
challenging the feature is to detect, as well as the availability 
of training data). Flukebook has a standardized web-based 
user interface for efficiently performing this data-labeling 
task, which involves users clicking to draw bounding boxes 
on source images and labeling viewpoint and orientation. 
Researchers work with the Flukebook development team to 
accomplish this task, providing expertise about identification 
for the newly supported species and how it is manually iden-
tified traditionally. Often Flukebook developers also partici-
pate in the labeling task, which gives them useful familiarity 
with the animals and features being studied. This is a con-
crete example of the biologist-programmer collaboration, 
which occurs across the Wildbook ecosystem. Examples of 
both a computer-generated annotation and hand-generated 
training annotations are shown in Fig. 5.

Flukebook’s detectors allow researchers to submit their 
raw photos, no longer needing to manipulate and/or crop 
images one at a time to perform individual identification; 
and to submit one photo containing multiple individuals 
without duplication for each animal. This is a significant 
timesaver, removing much of the effort in image preprocess-
ing, and tightens the loop between data collection and useful 
data products.

https://apps.apple.com/us/app/ocean-alert/id1457113771
https://apps.apple.com/us/app/ocean-alert/id1457113771
https://github.com/WildMeOrg/wildbook-ia
https://github.com/WildMeOrg/wildbook-ia
https://www.python.org
https://flask.palletsprojects.com
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Identification

Flukebook currently supports automatic matching for 
15 cetacean species using seven major ID algorithms, 
some of which have multiple versions or trained models 
(Fig. 4). These algorithms target 30 species-specific fea-
tures including flukes, dorsal fins, saddle patches, dorsal 
ridge, spots and scratches on flanks, and head callosities. 
This array of algorithms has grown consistently over the 
history of the project and at an accelerating pace, with 15 
identification configurations added in the first 6 months of 
2021. Including all of these matching methods in one place 
provides significant value, as many of them were initially 
developed for unique standalone desktop applications that 
are not interoperable (e.g. Crall et al. 2013; Thompson 
et al. 2019; Moskvyak et al. 2019).

Some of these algorithms, like HotSpotter (Crall et al. 
2013) and CurvRank (Weideman et al. 2017, 2020), were 

developed directly by Wild Me’s partners at Rensselaer 
Polytechnic Institute for use on Flukebook and related 
platforms. Others, such as finFindR (Thompson et  al. 
2019) and the pose-invariant embeddings algorithm (PIE, 
Moskvyak et al. 2019), were developed by independent 
computer vision researchers who then collaborated with 
Wild Me’s machine learning engineers to integrate these 
algorithms within WBIA. A third category of algorithm 
is those that have won public machine learning competi-
tions hosted on the popular competition platform Kaggle. 
These competition winners were made publicly avail-
able and were then integrated into Flukebook. This cat-
egory includes the Deepsense.ai matcher for aerial right 
whale photos (Bogucki et al. 2018), and a humpback fluke 
matcher we have deemed “Kaggle7”. The wide range of 
these algorithms’ origins demonstrates the flexibility of 
the platform to rapidly integrate new methods. Algorithm 
development alone is not useful to biologists and managers 

Fig. 5   Using an interface for curating training data, this right whale 
image was manually processed by an experienced user to generate 
input for machine learning models that can then repeat the detection 
task automatically without human review. This process is required 
for any new species. Note the dotted line indicating the front of the 

whales, which is manually labeled in the training data so that orienta-
tion can be extracted automatically once operational on the platform. 
Inset: Once trained, this sperm whale fluke was detected automati-
cally in Flukebook, allowing downstream machine learning identifi-
cation tasks to focus on only areas of interest in a photo

Table 2   Top-level image-derived objects in the Wildbook image analysis data model

Data name Description Data type

Image The raw images that are the inputs of the whole system Binary image files in supported formats, .jpg and .png
Annotation A rectangular subset of an image containing an individual animal or part of 

an animal
Bounding box coordinates and pointer to the source 

image, optional theta for rotation
Chip An Annotation, processed and resized to algorithm-specific dimensions; the 

direct input for identification algorithms
Pixel data as represented in a Python numpy array
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without a software interface to host data, query the sys-
tem, and to store and export results. The architecture of 
WBIA’s identification pipeline is modular, allowing these 
algorithms to be used interchangeably and further algo-
rithms to be integrated in a standardized way. An internal 
identification API uses the image analysis server’s Chips 
and Annotations as inputs and produces a standardized 
match-score output format.

One challenge in the development and integration of 
novel algorithms is that, like much in academic computer 
science, computer vision and machine learning research 
often take the form of developing cutting-edge algorithms 
based on the latest theory and technology in order to publish 
in leading field-specific journals. This often leads to “aca-
demic software”, which as a result of systemic constraints 
rather than any failure on the researcher’s part, are hard to 
scale to production and can have relatively little focus on the 
usability of the tool for conservation. One of the underly-
ing principles of Flukebook is to bridge this gap between 
academic algorithm development and applied conservation 
utility by bringing professional software design and devel-
opment expertise together to package and deliver the latest 
computer vision algorithms as useful tools to researchers. 
In a real sense, Flukebook becomes the long-term steward 
of these algorithms, which ensures their curation, access, 
and source code legacy while also supporting their utility 
through software updates, re-training with new data, and 
changes to protocols. Below, we broadly describe each iden-
tification algorithm available in Flukebook and maintained 
by the Flukebook developers.

HotSpotter

HotSpotter (Crall et al. 2013) is based on extracting and 
matching small, distinctive regions between query images 
and reference images in the catalog. These regions are 
found throughout each image using a Hessian-based key-
point extractor and described using the well-known SIFT 
descriptor (Lowe 1999). HotSpotter is not trained on a per-
species basis, as it is a general pattern matcher. Though 
this means the algorithm does not have for example hump-
back whale-specific knowledge when matching humpback 
flukes, it is advantageous that HotSpotter does not need an 
extensive catalog of training images in order to be applied 
to a new species. Matching these SIFT descriptor vec-
tors between images results in particular regions being 
found by the algorithm to correspond between the query 
and candidate matches. These corresponding regions are 
dubbed “hotspots”, and the likelihood of a correct match 
grows quickly with the number and distinctiveness of hot-
spots that are found. Post-processing eliminates hotspots 
that are spatially inconsistent with the others before a final 
ranking of potential catalog matches. In Flukebook, Hot-
Spotter is applied to humpback whale flukes, where it is 
very effective at matching pigmentation patterns (Flynn 
et al. 2017), illustrated in Fig. 6. It is also deployed here 
for other cetaceans with pigment and scar patterns, such as 
Atlantic spotted dolphins (Stenella frontalis), killer whales 
(Orcinus orca), Risso’s dolphins (Grampus griseus), North 
Atlantic and southern right whales (Eubaleana glacialis 
and E. australis), and gray whales (Eschrichtius robustus).

Fig. 6   The same humpback whale fluke matched using two algo-
rithms. On top of both comparisons is the new unidentified image, 
with best-matching database photo at the bottom. Left match made 
by HotSpotter. The highlighted regions show areas of “hotspots” 
distinctively matched between the two images. Right, trailing edges 
matched and extracted by CurvRank. The highlighted segment is the 

extracted trailing edge. Note that each algorithm returns a different 
best-matching image, reinforcing the benefit of multiple algorithms. 
While both algorithms were provided with the same Annotation, the 
results from CurvRank show a wider cropped version of the image for 
user interface reasons only. Colored algorithm highlights generated in 
Flukebook, photos courtesy Elding Whale Watch



994	 D. Blount et al.

1 3

CurvRank and dynamic time warping

Three generations of related curvature-based matching 
algorithms are used in Flukebook to match individuals 
based on the distinctive trailing edges of their flukes and 
dorsal fins. These types of algorithms have been widely 
used for whale flukes and dolphin dorsal fins since the 
onset of computer-assisted photo-identification (e.g., 
Whitehead 1990; Beekmans et al. 2005). This family of 
algorithms includes a cetacean-ID-specific implementation 
(Jablons 2016) of dynamic time warping (DTW; Berndt 
and Clifford 1994), as well as two versions of CurvRank 
(Weideman et al. 2017, 2020). The latter two algorithms 
use a digital-curvature-based encoding of the trailing edge 
contour of flukes or dorsal fins, and match these using a 
local Naive Bayes nearest neighbor algorithm (McCann 
and Lowe 2012). CurvRank learns a contour appearance 
model from training data that requires only coarse hand-
tracing of edges, which is hand-annotated by users in a 
web interface similar to the one used to train detection 
models (Fig. 5). These algorithms were originally applied 
to humpback whale flukes (Fig. 6), but more recently addi-
tional CurvRank models have been trained and deployed 
on Flukebook, matching (1) dolphin and baleen whale 
dorsal fin trailing edges and (2) the distinct dorsal ridge 
bumps on gray whales. We deploy multiple generations of 
these related techniques side-by-side because, while newer 
versions have the latest technology, earlier versions are 
better-studied and understood by the research community 
and are valuable in comparison to the newest methods.

FinFindR

While it is another trailing edge matcher, finFindR has a 
distinct architecture from the CurvRank family of algo-
rithms. Developed by Thompson et al. (2019) in R (R 
Core Team 2020), the Flukebook team collaborated with 
the developer to integrate it into Flukebook. It runs in a 
separate Docker container from WBIA and is accessed 
via a REST API. FinFindR is deployed on bottlenose dol-
phin dorsal fins where notches and scars, and to a lesser 
extent the overall shape of the fin, are used to identify 
individuals. Flukebook also uses this algorithm for other 
delphinid species including common dolphins (Delphinus 
delphis), spinner dolphins (Stenella longirostris), Indian 
Ocean humpback dolphins (Sousa plumbea), false killer 
whales (Pseudorca crassidens), and Risso’s dolphins; as 
well as baleen whale dorsal fins for both fin (Balaenoptera 
physalus) and blue whales (B. musculus).

Deepsense.ai

The U.S. National Oceanic and Atmospheric Administration 
(NOAA), in partnership with the New England Aquarium, 
hosted a competition for automated North Atlantic right 
whale ID algorithms on the popular machine learning com-
petition platform Kaggle. The winning method was devel-
oped by Polish machine learning firm Deepsense.ai using 
a subset of images from the North Atlantic Right Whale 
Catalogue (Hamilton and Martin 1999). This algorithm was 
found to match whales from this catalog quickly and with 
87% top-1 accuracy, using a series of convolutional neu-
ral networks (Bogucki et al. 2018). Special-purpose feature 
detectors orient and draw a bounding box around the head 
of each whale, which are passed to a classifier with one class 
for each individual. This algorithm has also been trained 
separately by developers at Wild Me on a catalog of south-
ern right whales, resulting in separate North Atlantic and 
southern right whale classifiers.

Kaggle7

Another Kaggle competition solution, dubbed “Kaggle7”, 
was selected for its relatively straightforward implementa-
tion and ability to train quickly (original GitHub repository 
at https://​github.​com/​ducha-​aiki/​whale-​ident​ifica​tion-​2018). 
It uses components of the DTW algorithms to predict the 
end points of the fluke and the notch, which help to precon-
dition the image prior to training and ID. Like the Deep-
sense.ai algorithm (and unlike other algorithms listed here), 
this algorithm is a fixed classifier, meaning it is only able to 
match those individuals that were in its training set. In the 
case of Kaggle7, this training set consists of pacific hump-
back whales uploaded by the Cascadia Research Collective 
(CRC), a set of 1701 individuals. Despite training only on 
CRC data, all users have access to this matcher.

Pose‑invariant embeddings

An algorithm dubbed PIE developed by Olga Moskvyak and 
colleagues (Moskvyak et al. 2019) uses triplet loss meth-
ods (Schroff et al. 2015) to train a deep learning encoding 
method that maps an image into a feature vector. Query and 
catalog image are matched based on distances between their 
associated feature vectors. This allows PIE to accommodate 
new individuals as they are added to the database. PIE is 
trained on a per-species basis, and originally two models 
were developed for manta rays and humpback whale flukes 
(two separately trained models). It has now been trained by 
both Flukebook developers on killer whales, sperm whales, 
and North Atlantic right whales (this model is applied on 
both North Atlantic and southern right whales), and by the 
original algorithm developer (O.M.) on gray whales. This is 

https://github.com/ducha-aiki/whale-identification-2018
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a promising new technique whose use will continue to grow 
as more species-specific models are trained.

Confirming matches for all algorithms: humans 
in the loop

Since individual identification is the crucial data point in 
photographic mark-recapture, which generates abundance 
estimates that can impact local, national, and international 
conservation policy, it is important that researchers use their 
expert judgement to confirm or reject potential matches 
identified through computer vision. As a result, each match-
ing algorithm in Flukebook returns a ranked list of candidate 
matches that are displayed to the user, who then selects and 
confirms the correct match. Thus, the data owners and expert 
researchers who use Flukebook maintain ultimate authority 
and responsibility for the data products, as well as a continu-
ous familiarity with the catalogs. Because matches can only 
be confirmed by users, cutting edge algorithms can be intro-
duced to the platform for testing by users, alongside more 
established algorithms whose performance has been rigor-
ously evaluated by biologists, without compromising the 
integrity of the results that are used in population analyses.

Because each match is confirmed by a user, and because 
many users intend to identify every possible animal that 
was observed during a mark-recapture study with the high-
est degree of confidence possible, algorithm accuracy fig-
ures (discussed further in the following section as well as 

Table 3) are better understood as a measure of time saved 
by researchers than as a measure of the accuracy of those 
researchers’ ultimate data products. If a researcher finds 
no matches to a photo using the available algorithms on 
Flukebook, they may choose to confirm that negative result 
via manual photo identification, either using gallery and 
search tools on Flukebook, including a side-by-side photo 
comparison tool for manual matching, or existing tools 
that the researcher used before adoption of this platform. It 
is important to understand Flukebook and automated photo 
ID in general as a tool used by researchers, rather than a 
tool that produces research on its own; the platform places 
the ultimate responsibility for data accuracy on its users.

For species and features with multiple algorithms avail-
able for matching, such as humpback whale flukes, the 
results from each algorithm are presented separately but 
on the same result page for comparison. Algorithm blend-
ing, which takes the ranked result lists of multiple algo-
rithms and combines them into a unified list of candidates, 
has been explored but not implemented to date. This is an 
interesting avenue of future research. At present, there is 
value in users getting to know each algorithm’s strengths 
and weaknesses and weighing those, along with the dis-
tinct features visible in each photo (for example, a pattern 
matching algorithm is not terribly useful on an all-black 
humpback fluke, but very useful on a half-white half-black 
fluke). Future efforts in blending should then consider the 
accuracy of each algorithm on a given species, and pos-
sibly the characteristics of a given query image as well.

Table 3   Reported performance numbers for algorithms in the Flukebook identification pipeline

The performance column includes only previously published figures when available. Because results are returned in the format of a ranked can-
didate list, “top-k score” means the percentage of results where the correct match is returned at rank k or lower, e.g. top-3 score indicates the per-
centage of correct matches returned in the top 3 candidates. Different publications use different values for k, specified in parentheses in the table

Species Feature Algorithm Performance (top-k score) Reference

Megaptera novaeangliae Tail fluke HotSpotter 69%, 90%
(top-1, top-2)

Flynn et al. (2017)

Megaptera novaeangliae Tail fluke Dynamic time warping 40%, 49%, 53%
(top-1, top-5, top-12)

Wiedeman et al. (2017)

Megaptera novaeangliae Tail fluke CurvRank v2 85%, 89%, 91%
(top-1, top-5, top-12)

Wiedeman et al. (2020)

Megaptera novaeangliae Tail fluke Pose-invariant embeddings (PIE) 63%, 88%, 93%
(top-1, top-5, top-10)

Moskvyak et al. (2019)

Megaptera novaeangliae Tail fluke CurvRank v1 and Hotspotter
Combined

88%, 92%, 98%
(top-1, top-5, top-12)

Wiedeman et al. (2017)

Tursiops truncatus Dorsal fin CurvRank v1 95%, 97%, 98%
(top-1, top-5, top-12)

Wiedeman et al. (2017)

Tursiops truncatus Dorsal fin finFindR 88%, 94%, 97%
(top-1, top-10, top-50)

Thompson et al. (2019)

Eubalaena glacialis Head, aerial (drone 
or plane) photo

Deepsense.ai 87%, 95%
(top-1, top-5)

Bogucki et al. (2018)
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Performance

It should be noted that a computer vision algorithm does not 
have an inherent level of accuracy because its accuracy is 
always dependent on the data that are provided. A top per-
forming algorithm will not be as accurate on blurry images 
as on perfectly framed and in-focus exemplar images. This 
is why in the broader field of computer vision, there are 
established reference datasets such as the MNIST dataset of 
hand-written digits (LeCun et al. 1998, dataset available at 
http://​yann.​lecun.​com/​exdb/​mnist) which are used to com-
pare algorithms against each other. These do not yet exist in 
conservation-focused computer vision yet; and as such, the 
reported accuracy numbers in Table 3 reflect both the algo-
rithms being presented as well as the datasets described in 
the cited sources. Due to the ongoing development of several 
of the species-specific pipelines, performance metrics can-
not be reported here. See the Discussion section for further 
comment on this.

Discussion

If we are to achieve data-driven decision making based 
on accurate abundance trajectories for the conservation of 
threatened species, then we need the capacity to rapidly iter-
ate population estimates to ensure regular evaluation and 
adjustment of our action plans. This requires reconciling 
disparate datasets, which for many species must occur across 
wide geographic regions and with the integration of oppor-
tunistic data from various stakeholders, in order to assess 
local, regional, and international population trends in sup-
port of national policy makers and multinational conserva-
tion agreements to protect those species.

In order to achieve these goals, Flukebook intercedes 
with three different stakeholder groups. The platform most 
directly benefits scientists through tools for photo-identifi-
cation and data management. Automation of once-manual 
tasks enables greater efficiency in processing and curating 
photo-ID data. These lead to both cost savings in undertak-
ing research and time savings in reporting on field studies. 
In addition, the collaborative platform allows questions to 
be asked on larger datasets than would otherwise be pos-
sible without significant logistical challenges, a noteworthy 
example of which can be seen in the collaborative global 
research done on the Wildbook for whale sharks (Norman 
et al. 2017) and the early-stage collaborative work already 
underway on Flukebook by consortia such as the Arabian 
Sea Whale Network and (Blount et al. 2020) the Caribbean 
Marine Mammals Preservation Network (CARI’MAM; Vail 
and Borobia 2020). Larger labs or organizations can enable 
multiple graduate students, interns, or researchers to work 
on the same datasets from remote locations. Furthermore, 

the cloud-based platform is backed up nightly and stored on 
multiple servers, limiting data loss or corruption and pro-
viding a long-term data repository that is accessible from 
anywhere in the world.

For naturalists and community scientists, Flukebook ena-
bles contribution to the active process of research, interac-
tion with the scientists undertaking it, and engagement with 
the feedback of which individual they saw while at sea. The 
platform also provides them the search functions to explore 
more of the species they have sighted and visualizations such 
as the social network diagram enable the users to learn more 
about the social lives of the individual they have sighted and 
submitted.

Finally, Flukebook creates a data pipeline which reaches 
managers and governments in formats that they are already 
using for population assessment or understanding changing 
distributions which may result from global climate change 
or localized anthropogenic impacts, such as those which may 
be associated with coastal construction or offshore energy 
development. Many management agencies, including gov-
ernments, seek to implement adaptive management, a sys-
tematic process for improving management by learning from 
outcomes and subsequently adjusting practices accordingly. 
A major challenge to the realization of adaptive manage-
ment is the requirement for rapid iteration of population 
or ecological models and to ultimately demonstrate trade-
offs in various decision scenarios. Machine learning based 
workflows contained within Flukebook allow for the col-
lection and accelerated analysis of large volumes of data 
to advance science-informed decision-making and enable 
dynamic management.

On the whole, Flukebook is building a community of rec-
reational wildlife enthusiasts, community scientists, natu-
ralists, dedicated researchers, policy makers, and managers 
through a platform that enables all to collaborate to support 
the conservation and management of highly mobile marine 
species.

Limitations

Flukebook, as with any toolkit built to save the user time 
and costs, empowers the user to use advanced methods but 
does not replace researchers entirely. Flukebook accelerates 
photo identification, but in order to undertake more detailed 
analysis such as modelling population estimates and social 
structure, a knowledgeable researcher must make important 
decisions regarding experiment design, data standards, and 
statistical inference offline and outside Flukebook. Impor-
tantly, they must be familiar with the data on the platform 
in order to make these decisions. As such, users conducting 
scientific research based on data from Flukebook should be 
careful to understand Flukebook and use its tools correctly.

http://yann.lecun.com/exdb/mnist
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While Flukebook’s standard data architecture allows for 
researchers to share data, match against each other’s pho-
tos, and even export each other’s data for outside analysis 
(when collaborations are in place); there are limits to the 
amount of data standardization that can be achieved when 
hosting such diverse data as this platform. Data fields such 
as categorical behavior observations (e.g., feeding, breach-
ing, mating), metrics of photo quality or heterogeneity of 
identifiability (e.g. scales from 0 to 5 vs 0 to 10 or those 
which include markedness when other users do not), and 
individual naming conventions (e.g. individual animals in 
Flukebook may have different nicknames given by different 
research groups) can differ significantly between research 
teams. Flukebook offers tools for users to efficiently stand-
ardize these fields across one study or even a consortium of 
researchers, such as the Organizations described in the Data 
Ownership and Collaboration Model section above, but a 
user is not forced to accept conventions which they might 
not share. This has the benefit of allowing diverse data to 
be imported onto Flukebook, with the potential drawback 
that multiple data standards will co-exist on the platform 
as separate fields in the database. In some senses, this is a 
limitation which is not new to this platform. It has always 
been true that if multiple catalogs of cetacean observations 
are to be combined into a single study, there may be some 
data reconciliation and standardization required to make 
that analysis possible given that field-wide standards do 
not always exist. Flukebook provides data sharing tools, a 
flexible database structure to import varied metadata fields, 
standardized export formats, and photo ID algorithms that 
empower and encourage researchers to collaborate in the 
first place. In some ways, Flukebook reflects the diversity 
of approaches which exist in cetacean photo-identification, 
and the analyses which rely upon it, while facilitating efforts 
without enforcing data standards which are not universal 
accepted within the field.

Determining the accuracy of a novel algorithm when 
applied to a particular species and specific body part comes 
with several challenges. First, every potential match must 
be confirmed by a researcher in order to be recorded, and 
to determine the rank at which an algorithm returned the 
correct result (for example whether the matching individual 
was the first, or tenth suggested candidate). Unless a his-
torical manually matched catalog can be used as reference, 
this process requires dedicated effort from expert biologists 
who upload and process their data on the platform in part-
nership with the algorithm developers or Flukebook team. 
Second, algorithm accuracy is always deeply dependent on 
the data on which it is queried. A catalog with one photo per 
individual will generally have lower matching accuracy than 
one with ten photos per individual; a catalog with higher 
quality data will see better algorithm performance than one 
of lower quality; a population with fifty total individuals 

will be easier to match within than one with thousands of 
individuals. Thus, any accuracy metric should be contextual-
ized by the data which produced those values, in contrast to 
the data one would like to query moving forward. It would 
not be wise for any researcher to assume an algorithm will 
have the same accuracy on their data as it does on another 
group’s data without testing this assumption. While we pre-
sent previously published accuracies in Table 3, we made 
a deliberate decision to deemphasize accuracy as a metric 
for the algorithms presented in this paper for these reasons. 
Performing a robust analysis for all 37 species-feature-algo-
rithm pipelines shown in Fig. 4 was outside the scope of this 
paper, though some of these pipelines are under active analy-
sis by researcher-users which will hopefully be published in 
the future. Flukebook is an ever-growing platform and when 
users with large existing catalogs join Flukebook, especially 
when using newly developed ID pipelines or species new to 
the platform, we encourage these biologists (and often work 
with them) to perform accuracy testing, querying a sample 
of their own previously identified photos to empirically gen-
erate an accuracy estimate on their own data.

A final point regarding accuracy is that since every match 
suggested by Flukebook’s algorithms must be confirmed by 
a user who is looking at both the query and candidate photos, 
an algorithm will not introduce errors into the data regard-
less of its purported accuracy rating. When a user confirms 
negative matches (potentially new individuals from photos 
queried which found no positive match in the database) using 
manual matching methods, these tools will save time with 
no accuracy detriment compared to previous fully manual 
methods. Flukebook enables the user to invest the majority 
of their time matching on these rare challenging matches by 
rapidly identifying the majority of well known, unchanged 
individuals which are identified regularly, thereby creating a 
more efficient use of expert time. Both efficiency and accu-
racy improvements have been robustly documented using 
various automatic cetacean matching systems over the years 
(e.g. Mizroch et al. 1990; Whitehead 1990; Beekmans et al. 
2005; Cheeseman et al. 2022). As with our discussion of 
the difficulties in extrapolating algorithm accuracy above, it 
is important that researchers measure these factors with the 
datasets, algorithms, and species relevant to their own work. 
In the context of Flukebook, this will require further study to 
quantify expected improvements in efficiency and accuracy 
for each specific pipeline on the platform, some of which is 
already underway. Automated identification is not a black 
box that produces scientific results on its own, but a tool 
that must be understood and used carefully by the scientist.

Lastly, Flukebook is a cloud-based, online platform and we 
acknowledge the limitations of using such a platform for those 
who are working in the majority of countries with emerging 
economies, and who may have limited or no access to high-
speed internet. Given that image processing and the algorithms 
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run on servers and not the user’s device, the system can be used 
as long as images can by uploaded and downloaded.

Future directions

An active area of development in the Wildbook software 
ecosystem is that of intelligent agents, or web-crawling 
bots designed to extract relevant sightings data, including 
photos or video captures, from publicly available posts on 
social media. This flips the previous approach in that the 
platform actively seeks out potential data contributors rather 
than passively expecting the users to submit. Tourists and 
ecologically minded members of the community are eager 
to upload photos and videos of animals they have seen in 
the wild, without realizing that these might represent valu-
able ecological data. Flukebook and its sister platforms like 
Sharkbook.ai provide not only the technological backbone 
to process such data, but an authoritative catalog of the indi-
vidual animals who might appear in this content, linked to 
the researchers who would be interested in these sightings.

The first Wildbook intelligent agent deployed was a 
YouTube crawler integrated with Sharkbook.ai (then under 
the name “Whaleshark.org”) in 2018. This agent searches 
YouTube for videos of the focal species, then processes key 
frames from the video to find clear photos of the animals 
and identify the individuals depicted. The agent also extracts 
available information from the video file and metadata; as 
well as reading the text available on YouTube to get the date, 
time, and location of the sighting. If the location, date and 
time cannot be automatically extracted, the bot actually asks 
the submitter for this information via the YouTube com-
ment section, in multiple languages based on the language 
of the original post. This feature has yet to be implemented 
in Flukebook but is coming in a future release.

An intelligent agent active on Flukebook is ‘Tweet-a-whale’ 
which is currently in beta release (the phase of software devel-
opment when a feature is fully implemented but undergoing 
usability testing). Twitter users can submit a photo for identi-
fication directly to Flukebook by tweeting a photo and tagging 
the account @tweetawhale. The agent running the account will 
extract available metadata from the text of the tweet and submit 
the image to Flukebook. The image goes through detection 
and identification, and resulting candidate matches are tweeted 
back to the original submitter. Users are then required to log in 
to Flukebook to approve these potential matches, meaning a 
member of the public who is not a Flukebook user cannot con-
firm match results on their own. Data submitted this way are 
then available to all researchers on Flukebook and labeled as 
data submitted by the public, unless the twitter user is already 
affiliated with a Flukebook user account, in which case the 
data are controlled by that user. To ensure privacy as well as 
conform with regulations such as GDPR (https://​gdpr-​info.​

eu/), publicly submitted data are anonymized with respect to 
their submitter. Since these publicly submitted data are labeled 
as such on Flukebook, researcher users can choose whether 
these data are included in analyses or exports they perform. 
As many scientists who have worked with community science 
and especially social media submissions know, the quality of 
data submitted by the general public might not be of the same 
caliber as that submitted by researchers.

The data and matching tools on Flukebook provide opportu-
nities to perform studies regarding bias in mark recapture and 
related concepts such as individual matchability. For example, 
work is currently underway to study the relationship between 
changing patterns on gray whales and the matchability of 
their photos separated by large amounts of time. Because gray 
whale patterns change considerably as scars and marks accu-
mulate and fade on their skin, one expects that photos of the 
same individual at close periods in time will be more easily 
matched than those separated by a long period, which will 
be quantified using Flukebook data in a partnership between 
Flukebook developers and the data owners. We hope other 
studies such as those relating matchability to subjective image 
quality rankings will be performed by our users in the future. 
While Flukebook does not answer these questions of recapture 
bias on its own, nor does it make them obsolete, it makes them 
more tractable to its researcher-users.

Next generation features will also include species detection 
for community science submissions, and an overhaul of the 
user interface and experience designed for a modern web. This 
entirely new frontend to Wildbook is under active development, 
and will be deployed first on the Wildbook for Zebras (https://​
zebra.​wildb​ook.​org/) in early 2022. There will subsequently be 
a gradual rollout to other Wildbooks, such that when the new 
user interface is deployed on Flukebook, it will have already 
been extensively used and tested on other platforms.

Conclusions

By leveraging cutting-edge computer vision with a global data 
management platform, Flukebook allows for easier storage of 
data and more rapid photo-identification in cetacean studies 
while bringing together researchers and community scien-
tists to create bigger datasets. Flukebook’s position within 
the open-source family of Wildbook platforms provides major 
benefits for conservation technology development, where 
returns on technology investment are multiplied across every 
Wildbook platform. This computer vision pipeline works with 
real-world conditions, allowing for broad contributions from 
both research professionals and amateur naturalists. This pro-
cess gives greater confidence that we know who the animals 
are and where they have been. Getting this baseline infor-
mation correct allows government and managers to focus on 
policies that can bring about actionable change.

https://gdpr-info.eu/
https://gdpr-info.eu/
https://zebra.wildbook.org/
https://zebra.wildbook.org/
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